Electronically excited and ionized states of the CH2CH2OH radical: a theoretical study.

نویسندگان

  • B Karpichev
  • L Koziol
  • K Diri
  • H Reisler
  • A I Krylov
چکیده

The low lying excited electronic states of the 2-hydroxyethyl radical, CH(2)CH(2)OH, have been investigated theoretically in the range 5-7 eV by using coupled-cluster and equation-of-motion coupled-cluster methods. Both dissociation and isomerization pathways are identified. On the ground electronic potential energy surface, two stable conformers and six saddle points at energies below approximately 900 cm(-1) are characterized. Vertical excitation energies and oscillator strengths for the lowest-lying excited valence state and the 3s, 3p(x), 3p(y), and 3p(z) Rydberg states have been calculated and it is predicted that the absorption spectrum at approximately 270-200 nm should be featureless. The stable conformers and saddle points differ primarily in their two dihedral coordinates, labeled d(HOCC) (OH torsion around CO), and d(OCCH) (CH(2) torsion around CC). Vertical ionization from the ground-state conformers and saddle points leads to an unstable structure of the open-chain CH(2)CH(2)OH(+) cation. The ion isomerizes promptly either to the 1-hydroxyethyl ion, CH(3)CHOH(+), or to the cyclic oxirane ion, CH(2)(OH)CH(2) (+), and the Rydberg states are expected to display a similar behavior. The isomerization pathway depends on the d(OCCH) angle in the ground state. The lowest valence state is repulsive and its dissociation along the CC, CO, and CH bonds, which leads to CH(2)+CH(2)OH, CH(2)CH(2)+OH, and H+CH(2)CHOH, should be prompt. The branching ratio among these channels depends sensitively on the dihedral angles. Surface crossings among Rydberg and valence states and with the ground state are likely to affect dissociation as well. It is concluded that the proximity of several low-lying excited electronic states, which can either dissociate directly or via isomerization and predissociation pathways, would give rise to prompt dissociation leading to several simultaneous dissociation channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: theory, implementation, and examples.

Implementation of Dyson orbitals for coupled-cluster and equation-of-motion coupled-cluster wave functions with single and double substitutions is described and demonstrated by examples. Both ionizations from the ground and electronically excited states are considered. Dyson orbitals are necessary for calculating electronic factors of angular distributions of photoelectrons, Compton profiles, e...

متن کامل

Butadiene. 3. Charge Distribution in Electronically Excited States

The vertical transition energies for butadiene have been calculated using the CIS/6-3 1 1 (2+)G* theoretical model. The observed energies were satisfactorily reproduced. The charge distribution for each of the excited states was calculated so that the change from the ground-state distribution could be examined. The nature of the Rydberg states are discussed. Quantitative information on the degr...

متن کامل

Time-resolved photoelectron imaging of the chloranil radical anion: ultrafast relaxation of electronically excited electron acceptor states.

The spectroscopy and dynamics of near-threshold excited states of the isolated chloranil radical anion are investigated using photoelectron imaging. The photoelectron images taken at 480 nm clearly indicate resonance-enhanced photodetachment via a bound electronic excited state. Time-resolved photoelectron imaging reveals that the excited state rapidly decays on a timescale of 130 fs via intern...

متن کامل

Microscopic Parameters in the Excited State of Toluene and Some of Its Haloderavatives

The Ultraviolet-visible (UV) spectra of toluene, ortho-bromo and para-bromo toluene in different solvents have been studied. The electric dipole moments and polarizabilities in the molecular excited electronic states were determined. It was found that the electric dipole moments for the excited states (µ*) and the ground states (µ) of these compounds are equal, and the change in dipole moment i...

متن کامل

Relativistic and correlated calculations on the ground, excited, and ionized states of iodine

The electronic structure, spectroscopic, and bonding properties of the ground, excited, and ionized states of iodine are studied within a four-component relativistic framework using the MOLFDIR program package. The experimentally determined properties of the Sg 1 ground state are well reproduced by our results calculated at the CCSD~T! level of theory. Relativistic effects and core– valence cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 132 11  شماره 

صفحات  -

تاریخ انتشار 2010